Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
1.
J Vis Exp ; (186)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35993762

RESUMO

Cnidarians, including sea anemones, corals, and jellyfish, exhibit diverse morphology and lifestyles that are manifested in sessile polyps and free-swimming medusae. As exemplified in established models such as Hydra and Nematostella, stem cells and/or proliferative cells contribute to the development and regeneration of cnidarian polyps. However, the underlying cellular mechanisms in most jellyfish, particularly at the medusa stage, are largely unclear, and, thus, developing a robust method for identifying specific cell types is critical. This paper describes a protocol for visualizing stem-like proliferating cells in the hydrozoan jellyfish Cladonema pacificum. Cladonema medusae possess branched tentacles that continuously grow and maintain regenerative capacity throughout their adult stage, providing a unique platform with which to study the cellular mechanisms orchestrated by proliferating and/or stem-like cells. Whole-mount fluorescent in situ hybridization (FISH) using a stem cell marker allows for the detection of stem-like cells, while pulse labeling with 5-ethynyl-2'-deoxyuridine (EdU), an S phase marker, enables the identification of proliferating cells. Combining both FISH and EdU labeling, we can detect actively proliferating stem-like cells on fixed animals, and this technique can be broadly applied to other animals, including non-model jellyfish species.


Assuntos
Hidrozoários , Animais , Desoxiuridina/análogos & derivados , Hidrozoários/genética , Hibridização in Situ Fluorescente , Células-Tronco
2.
Proc Natl Acad Sci U S A ; 119(35): e2210176119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994676

RESUMO

Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood-brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.


Assuntos
Dano ao DNA , Reparo do DNA , Desoxiuridina , DNA/química , DNA/genética , Desoxiuridina/análogos & derivados , Genoma Humano , Humanos , Timidina/análogos & derivados , Transcrição Gênica , Raios Ultravioleta
3.
Vet Immunol Immunopathol ; 249: 110430, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525064

RESUMO

Allogeneic solid organ transplantation is currently the only treatment option for end stage organ disease. The shortage of available donor organs has driven efforts to utilize xenogeneic organs for transplantation. In vitro methods for evaluating immune-compatibility are a quick and low cost means of screening novel tissue products prior to more involved, expensive, and invasive live animal studies. Recently, a new analog of the DNA base thymidine, 5-ethynyl-2'-deoxyuridine (EdU), was developed. It may be used in a fast, efficient and specific means of evaluating cell proliferation via flow cytometry. This study was designed to test and optimize this platform for assessing equine xenogeneic one-way mixed lymphocyte reaction (MLR) to porcine stimulator cells. Furthermore, it was hypothesized that an enriched T-lymphocyte (T-cell) population would generate a stronger proliferative response to stimulation, and higher levels of cytokine production when compared to unfractionated peripheral blood mononuclear cells (PBMCs). PBMCs and T-cells were isolated from 3 horses and 4 pigs. Equine xenogeneic MLRs were set up using porcine allogeneic MLRs as a reference for clinically acceptable levels of cell proliferation. Equine T-cells showed significantly greater EdU incorporation in one-way xenogeneic MLRs than equine PBMCs. However, there was no significant difference in cell proliferation between porcine T-cell and PBMC as responders in allogenic one-way MLRs. Given the results of this study, we consider that enriched equine T-cells should be used in preference to unfractionated PBMCs when attempting to evaluate the equine xenogeneic response using the EdU assay as an indicator of suitability for transplant in vivo.


Assuntos
Desoxiuridina , Leucócitos Mononucleares , Animais , Desoxiuridina/análogos & derivados , Cavalos , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos/veterinária , Suínos , Linfócitos T
4.
J Phycol ; 58(4): 555-567, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35352350

RESUMO

Cell cycle studies in plants and algae are highly dependent on reliable methods for detecting cellular DNA replication. With its short growth cycle and ease of genetic transformation, Phaeodactylum tricornutum is an important model organism for the study of pennate diatoms. Here we explored two different methods to detect the cell cycle of P. tricornutum, one using SYBR-green I to via flow cytometry, and the other using EdU labeling to observe cell cycle changes under fluorescence microscopy. Both EdU labeling fluorescence microscopy and SYBR-green I staining flow cytometry accurately indicated that the cells of P. tricornutum enter the G2/M phase after 12 h of light exposure. The results indicate that SYBR Green I was an adequate detection method for nuclear DNA quantitation in cells of P. tricornutum using a flow cytometer and without RNase A treatment. In addition, EdU can be applied to P. tricornutum to reliably detect cell proliferation. Besides, Mg-ProtoIX was able to reverse the cell cycle division inhibition of P. tricornutum and allow the nuclear DNA replication to proceed normally. Taken together, the photoperiodic division time point was clearly identified, which sheds light on the regulation of cell division mechanism in P. tricornutum.


Assuntos
Diatomáceas , Ciclo Celular , Divisão Celular , Desoxiuridina/análogos & derivados , Diatomáceas/genética , Citometria de Fluxo/métodos
5.
PLoS One ; 17(3): e0265084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35263366

RESUMO

Cell culture studies offer the unique possibility to investigate the influence of pharmacological treatments with quantified dosages applied for defined time durations on survival, morphological maturation, protein expression and function as well as the mutual interaction of various cell types. Cultures obtained from postnatal rat brain contain a substantial number of glial cells that further proliferate with time in culture leading to an overgrowth of neurons with glia, especially astrocytes and microglia. A well-established method to decrease glial proliferation in vitro is to apply low concentrations of cytosine arabinoside (AraC). While AraC primarily effects dividing cells, it has been reported repeatedly that it is also neurotoxic, which is the reason why most protocols limit its application to concentrations of up to 5 µM for a duration of 24 h. Here, we investigated 5-fluoro-2'-deoxyuridine (FUdR) as a possible substitute for AraC. We applied concentrations of both cytostatics ranging from 4 µM to 75 µM and compared cell composition and cell viability in cultures prepared from 0-2- and 3-4-day old rat pups. Using FUdR as proliferation inhibitor, higher ratios of neurons to glia cells were obtained with a maximal neuron to astrocyte ratio of up to 10:1, which could not be obtained using AraC in postnatal cultures. Patch-clamp recordings revealed no difference in the amplitudes of voltage-gated Na+ currents in neurons treated with FUdR compared with untreated control cells suggesting replacement of AraC by FUdR as glia proliferation inhibitor if highly neuron-enriched postnatal cultures are desired.


Assuntos
Astrócitos , Citostáticos , Animais , Astrócitos/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Citostáticos/farmacologia , Desoxiuridina/análogos & derivados , Floxuridina/farmacologia , Hipocampo , Neurônios/metabolismo , Ratos
6.
Yakugaku Zasshi ; 142(2): 189-193, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35110455

RESUMO

We report a rare case of suppurative thrombophlebitis of the posterior neck caused by Streptococcus constellatus. A 69-year-old female patient was admitted to the hospital with neck pain and fever, which had persisted for 16 days prior to hospitalization. On day 1 (day of admission), blood cultures (later identifying S. constellatus) were performed, and ceftriaxone (CTRX) IV (2 g SID) was started. On day 3, suppurative thrombophlebitis of the posterior neck was diagnosed by CT scan. The antimicrobials were changed from CTRX to ampicillin/sulbactam IV (12 g QID) to guard against the possibility of complicated infection with Fusobacterium spp. or Prevotella spp. On day 17, a CT scan revealed that the thrombus remained. Therefore, oral edoxaban (30 mg SID) was started. On day 27, the patient was discharged after her medication was changed to oral amoxicillin/clavulanate (1500 mg/375 mg TID). On day 33, the amoxicillin/clavulanate was changed to oral cefaclor (1500 mg TID) and edoxaban was discontinued due to itching. On day 45, the course of cefaclor was completed. The patient went on to follow an uneventful course with no relapses or complications for two years since the conclusion of treatment. These results suggest that when a patient presents with persistent neck pain accompanied by fever, suppurative thrombophlebitis of the posterior neck should be considered. In antimicrobial therapy, the treatment could be switched from intravenous to oral. In addition, direct-acting oral anticoagulants may be an alternative to other forms of anticoagulants.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/administração & dosagem , Antibacterianos/administração & dosagem , Cefaclor/administração & dosagem , Pescoço , Infecções Estreptocócicas , Streptococcus constellatus/patogenicidade , Tromboflebite/tratamento farmacológico , Tromboflebite/microbiologia , Administração Oral , Idoso , Ampicilina/administração & dosagem , Desoxiuridina/administração & dosagem , Desoxiuridina/efeitos adversos , Desoxiuridina/análogos & derivados , Substituição de Medicamentos , Feminino , Humanos , Infusões Intravenosas , Streptococcus constellatus/isolamento & purificação , Sulbactam/administração & dosagem , Supuração , Tromboflebite/diagnóstico , Tromboflebite/patologia , Resultado do Tratamento
7.
Environ Mol Mutagen ; 63(1): 37-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023215

RESUMO

This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro "host" cell mutagenicity of its active principle, ß-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2'-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.


Assuntos
Antivirais/efeitos adversos , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Hidroxilaminas/efeitos adversos , Nucleosídeos/efeitos adversos , SARS-CoV-2/genética , Amidas/efeitos adversos , Amidas/uso terapêutico , Antivirais/uso terapêutico , Citidina/efeitos adversos , Citidina/uso terapêutico , Desoxiuridina/efeitos adversos , Desoxiuridina/análogos & derivados , Desoxiuridina/uso terapêutico , Genoma Humano/efeitos dos fármacos , Humanos , Hidroxilaminas/uso terapêutico , Mutagênese/efeitos dos fármacos , Nucleosídeos/uso terapêutico , Pirazinas/efeitos adversos , Pirazinas/uso terapêutico , Ribavirina/efeitos adversos , Ribavirina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos
8.
Histochem Cell Biol ; 157(2): 239-250, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757474

RESUMO

Detection of synthetic thymidine analogues after their incorporation into replicating DNA during the S-phase of the cell cycle is a widely exploited methodology for evaluating proliferative activity, tracing dividing and post-mitotic cells, and determining cell-cycle parameters both in vitro and in vivo. To produce valid quantitative readouts for in vivo experiments with single intraperitoneal delivery of a particular nucleotide, it is necessary to determine the time interval during which a synthetic thymidine analogue can be incorporated into newly synthesized DNA, and the time by which the nucleotide is cleared from the blood serum. To date, using a variety of methods, only the bioavailability time of tritiated thymidine and 5-bromo-2'-deoxyuridine (BrdU) have been evaluated. Recent advances in double- and triple-S-phase labeling using 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU), and 5-ethynyl-2'-deoxyuridine (EdU) have raised the question of the bioavailability time of these modified nucleotides. Here, we examined their labeling kinetics in vivo and evaluated label clearance from blood serum after single intraperitoneal delivery to mice at doses equimolar to the saturation dose of BrdU (150 mg/kg). We found that under these conditions, all the examined thymidine analogues exhibit similar labeling kinetics and clearance rates from the blood serum. Our results indicate that all thymidine analogues delivered at the indicated doses have similar bioavailability times (approximately 1 h). Our findings are significant for the practical use of multiple S-phase labeling with any combinations of BrdU, IdU, CldU, and EdU and for obtaining valid labeling readouts.


Assuntos
Bromodesoxiuridina/metabolismo , Desoxiuridina/análogos & derivados , Glibureto/análogos & derivados , Timidina/metabolismo , Animais , Disponibilidade Biológica , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/sangue , Giro Denteado/metabolismo , Desoxiuridina/administração & dosagem , Desoxiuridina/sangue , Desoxiuridina/metabolismo , Glibureto/administração & dosagem , Glibureto/sangue , Glibureto/metabolismo , Injeções Intraperitoneais , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Timidina/administração & dosagem , Timidina/análogos & derivados
9.
Transl Vis Sci Technol ; 10(11): 7, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478491

RESUMO

Purpose: To develop a method to label proliferating corneal endothelial cells (ECs) in rabbits in vivo and track their migration over time. Methods: We compared intraperitoneal (IP) and intracameral (IC) administration of 5-ethynyl-2'-deoxyuridine (EdU) in two experiments: (1) six rabbits received IP or IC EdU. Blood and aqueous humor (AH) samples were incubated with HL-60 cells. Flow cytometry detected the EdU incorporation, representing the bioavailability of EdU. (2) In vivo EdU labeling was investigated in pulse-chase study: 48 rabbits received EdU IP or IC. The corneas were flat-mounted after 1, 2, 5, or 40 days and imaged using fluorescence microscopy. EdU+ and Ki67+ ECs were quantified and their distance from the peripheral endothelial edge was measured. Results: EdU was bioavailable in the AH up to 4 hours after IC injection. No EdU was detected in the blood or the AH after IP injection. High quality EdU labeling of EC was obtained only after IC injection, achieving 2047 ± 702 labeled ECs. Proliferating ECs were located exclusively in the periphery within 1458 ± 146 µm from the endothelial edge. After 40 days, 1490 ± 397 label-retaining ECs (LRCs) were detected, reaching 2219 ± 141 µm from the edge, indicating that LRCs migrated centripetally. Conclusions: IC EdU injection enables the labeling and tracking of proliferating ECs. LRCs seem to be involved in endothelial homeostasis, yet it remains to be investigated whether they represent endothelial progenitor cells. Translational Relevance: EdU labeling in animal models can aid the search for progenitor cells and the development of cell therapy for corneal endothelial dysfunction.


Assuntos
Desoxiuridina , Células Endoteliais , Animais , Desoxiuridina/análogos & derivados , Citometria de Fluxo , Coelhos , Células-Tronco
10.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389674

RESUMO

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Assuntos
Astrócitos/fisiologia , Conexina 30/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Animais , Diferenciação Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Interneurônios/enzimologia , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Recombinação Genética , Tamoxifeno/farmacologia
11.
Sci Rep ; 11(1): 14525, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267251

RESUMO

Notch signaling is required to repress the formation of vertebrate cone photoreceptors and to maintain the proliferative potential of multipotent retinal progenitor cells. However, the mechanism by which Notch signaling controls these processes is unknown. Recently, restricted retinal progenitor cells with limited proliferation capacity and that preferentially generate cone photoreceptors have been identified. Thus, there are several potential steps during cone genesis that Notch signaling could act. Here we use cell type specific cis-regulatory elements to localize the primary role of Notch signaling in cone genesis to the formation of restricted retinal progenitor cells from multipotent retinal progenitor cells. Localized inhibition of Notch signaling in restricted progenitor cells does not alter the number of cones derived from these cells. Cell cycle promotion is not a primary effect of Notch signaling but an indirect effect on progenitor cell state transitions that leads to depletion of the multipotent progenitor cell population. Taken together, this suggests that the role of Notch signaling in cone photoreceptor formation and proliferation are both mediated by a localized function of Notch in multipotent retinal progenitor cells to repress the formation of restricted progenitor cells.


Assuntos
Receptores Notch/metabolismo , Retina/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Proliferação de Células , Embrião de Galinha , Desoxiuridina/análogos & derivados , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Receptores Notch/genética , Sequências Reguladoras de Ácido Nucleico , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Fase S , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição/genética
12.
Methods Mol Biol ; 2329: 71-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085216

RESUMO

This chapter describes a method used to analyze the behavior of histone modifications in S phase in Arabidopsis using a whole-mount immunostaining technique. Previous studies have demonstrated that dramatic changes in local chromatin structure are required for the initiation and progression of DNA replication, and that histone modifications play an essential role in the determination of chromatin structure in S phase. Since euchromatic and heterochromatic regions are replicated in distinct S-phase stages, it is important to identify histone modifications at each stage. Here, we introduce a protocol for whole-mount immunostaining combined with 5-ethynyl-2'-deoxyuridine (EdU) staining, which enables the visualization of spatial patterns in histone modifications in the early and late S-phase nuclei of Arabidopsis roots.


Assuntos
Arabidopsis/fisiologia , Cromatina/metabolismo , Desoxiuridina/análogos & derivados , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Desoxiuridina/química , Epigênese Genética , Código das Histonas , Histonas/química , Imuno-Histoquímica , Microscopia Confocal , Raízes de Plantas/fisiologia , Fase S
13.
Methods Mol Biol ; 2329: 165-177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085222

RESUMO

The principles and practice of a methodology of cell cycle analysis that allows the estimation of the absolute length (in units of time) of all cell cycle stages (G1, S, and G2) are detailed herein. This methodology utilizes flow cytometry to take full advantage of the excellent stoichiometric properties of click chemistry. This allows detection, via azide-fluorochrome coupling, of the modified deoxynucleoside 5-ethynyl-2'-deoxyuridine (EDU) incorporated into replicated DNA through incremental pulsing times. This methodology, which we designated as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, can be applied to cell types with very distinct cell cycle features, and has shown excellent agreement with established techniques of cell cycle analysis. Useful modifications to the original protocol (Pereira et al., Oncotarget, 8:40514-40,532, 2017) have been introduced to increase flexibility in data collection and facilitate data analysis.


Assuntos
Ciclo Celular , DNA/metabolismo , Desoxiuridina/análogos & derivados , Técnicas de Cultura de Células , Linhagem Celular , Química Click/métodos , DNA/química , Replicação do DNA , Desoxiuridina/química , Citometria de Fluxo , Humanos
14.
J Vis Exp ; (171)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34028440

RESUMO

In vivo cell cycle progression analysis is routinely performed in studies on genes regulating mitosis and DNA replication. 5-Ethynyl-2'-deoxyuridine (EdU) has been utilized to investigate replicative/S-phase progression, whereas antibodies against phospho-histone H3 have been utilized to mark mitotic nuclei and cells. A combination of both labels would enable the classification of G0/G1 (Gap phase), S (replicative), and M (mitotic) phases and serve as an important tool to evaluate the effects of mitotic gene knockdowns or null mutants on cell cycle progression. However, the reagents used to mark EdU-labelled cells are incompatible with several secondary antibody-fluorescent tags. This complicates immunostaining, where primary and tagged secondary antibodies are used to mark pH3-positive mitotic cells. This paper describes a step-by-step protocol for the dual-labeling of EdU and pH3 in Drosophila larval neural stem cells, a system utilized extensively to study mitotic factors. Additionally, a protocol is provided for image analysis and quantification to allocate labeled cells in 3 distinct categories, G0/G1, S, S>G2/M (progression from S to G2/M), and M phases.


Assuntos
Ciclo Celular , Histonas , Células-Tronco Neurais , Animais , Desoxiuridina/análogos & derivados , Drosophila , Mitose
15.
Molecules ; 26(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804620

RESUMO

Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2'-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5'-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.


Assuntos
Citotoxinas/farmacologia , Desoxiuridina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila , Quadruplex G , Neoplasias/tratamento farmacológico , Citotoxinas/química , Desoxiuridina/química , Desoxiuridina/farmacologia , Células HT29 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
16.
Science ; 372(6537): 91-94, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795458

RESUMO

Neurons are the longest-lived cells in our bodies and lack DNA replication, which makes them reliant on a limited repertoire of DNA repair mechanisms to maintain genome fidelity. These repair mechanisms decline with age, but we have limited knowledge of how genome instability emerges and what strategies neurons and other long-lived cells may have evolved to protect their genomes over the human life span. A targeted sequencing approach in human embryonic stem cell-induced neurons shows that, in neurons, DNA repair is enriched at well-defined hotspots that protect essential genes. These hotspots are enriched with histone H2A isoforms and RNA binding proteins and are associated with evolutionarily conserved elements of the human genome. These findings provide a basis for understanding genome integrity as it relates to aging and disease in the nervous system.


Assuntos
Reparo do DNA , Genoma Humano , Instabilidade Genômica , Neurônios/metabolismo , Envelhecimento/genética , Dano ao DNA , DNA Intergênico , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Células-Tronco Embrionárias , Histonas/metabolismo , Humanos , Mitose , Mutação , Doenças do Sistema Nervoso/genética , Neurônios/citologia , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNA , Transcrição Gênica
17.
Mol Pharm ; 18(5): 2053-2065, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33886324

RESUMO

We fabricated bilirubin-bovine serum albumin (BR-BSA) nanocomplexes as candidates for the delivery of 5-fluoro-2-deoxyuridine (5FUdr) against experimental murine lymphoma. BR was attached to 5FUdr via acid-labile ester bonds mimicking small-molecule drug conjugates. The construct was self-assembled with BSA through strong noncovalent interactions with high drug occupancy in the core and labeled with folic acid (FA) to target cancer cells. The BR-5FUdr-BSA-FA nanoconstruct exhibits excellent biocompatibility, prevents nephrotoxicity, and is tolerated by red blood cells and mononuclear cells. The construct also showed increased accumulation in lymph nodes and tumor cells. BR-5FUdr-BSA-FA caused prolonged growth inhibition and apoptosis, enhanced mitochondrial reactive oxygen species generation, and minimized the viability of parental and doxorubicin-resistant Dalton's lymphoma cells. Treatment of tumor-bearing mice with BR-5FUdr-BSA-FA significantly increased the life span of the animals, improved their histopathological parameters, and downregulated PD-1 expression, suggesting the potential of the construct for 5FUdr delivery to treat lymphoma.


Assuntos
Desoxiuridina/análogos & derivados , Portadores de Fármacos/química , Linfoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Bilirrubina/química , Materiais Biomiméticos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Desoxiuridina/administração & dosagem , Desoxiuridina/farmacocinética , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma/patologia , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Soroalbumina Bovina/química
18.
Nat Protoc ; 16(2): 1193-1218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33442052

RESUMO

The ability to monitor DNA replication fork directionality at the genome-wide scale is paramount for a greater understanding of how genetic and environmental perturbations can impact replication dynamics in human cells. Here we describe a detailed protocol for isolating and sequencing Okazaki fragments from asynchronously growing mammalian cells, termed Okazaki fragment sequencing (Ok-seq), for the purpose of quantitatively determining replication initiation and termination frequencies around specific genomic loci by meta-analyses. Briefly, cells are pulsed with 5-ethynyl-2'-deoxyuridine (EdU) to label newly synthesized DNA, and collected for DNA extraction. After size fractionation on a sucrose gradient, Okazaki fragments are concentrated and purified before click chemistry is used to tag the EdU label with a biotin conjugate that is cleavable under mild conditions. Biotinylated Okazaki fragments are then captured on streptavidin beads and ligated to Illumina adapters before library preparation for Illumina sequencing. The use of Ok-seq to interrogate genome-wide replication fork initiation and termination efficiencies can be applied to all unperturbed, asynchronously growing mammalian cells or under conditions of replication stress, and the assay can be performed in less than 2 weeks.


Assuntos
Replicação do DNA/fisiologia , DNA/análise , Química Click/métodos , DNA/genética , Replicação do DNA/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Estreptavidina
19.
Biomed Chromatogr ; 35(5): e5050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33314228

RESUMO

A simple and sensitive preconcentration strategy using sequential electrokinetic and hydrodynamic injection modes in micellar electrokinetic chromatography with diode array detection was developed and applied for the separation and determination of anticancer agent, 5-fluorouracil and its metabolite, 5-fluoro-2'-deoxyuridine, in human plasma. Sequential injection modes with increased analyte loading capacity using the anionic pseudo-stationary phase facilitated collection of the dispersed neutral and charged analytes into narrow zones and improved sensitivity. Several important parameters affecting sample enrichment performance were evaluated and optimized in this study. Under the optimized experimental conditions, 614- and 643-fold and 782- and 803-fold sensitivity improvement were obtained for 5-fluorouracil and its metabolite when compared with normal hydrodynamic and electrokinetic injection, respectively. The method has good linearity (1-1,000 ng/ml) with acceptable coefficient of determination (r2 > 0.993), low limits of detection (0.11-0.14 ng/ml) and satisfactory analyte relative recovery (97.4-99.7%) with relative standard deviations of 4.6-9.3% (n = 6). Validation results as well as the application to analysis of human plasma samples from cancer patients demonstrate the applicability of the proposed method to clinical studies.


Assuntos
Antineoplásicos/sangue , Cromatografia Capilar Eletrocinética Micelar/métodos , Desoxiuridina/análogos & derivados , Fluoruracila/sangue , Desoxiuridina/sangue , Humanos
20.
Methods Mol Biol ; 2230: 357-365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197025

RESUMO

Identifying and tracking proliferating and quiescent cells in situ is an important phenotyping component of skeletal tissues in development, physiology and disease. Among all the methods that exist, which include immunostaining for cell cycle-specific proteins, the gold standards use thymidine analogs. These compounds label proliferating cells by being incorporated into de novo-synthesized genomic DNA. 5-bromo-2'-deoxyuridine (BrdU) has traditionally been used for this purpose, but its detection is lengthy and requires harsh treatment of tissue sections to give access of anti-BrdU antibody to DNA. An alternative, more recently developed, uses 5-ethynyl-2'-deoxyuridine (EdU). This thymidine analog is detected by click chemistry, that is, covalent cross-linking of its ethynyl group with a fluorescent azide that is small enough to easily penetrate native tissues and reach DNA. In addition to being simple and quick, this EdU-based assay is compatible with other protocols, such as immunostaining, on the same tissue sections. We here describe an EdU-based protocol optimized to label and functionally assess actively proliferating cells as well as slowly dividing cells, including stem cells, in mouse skeletal tissues.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Coloração e Rotulagem/métodos , Animais , Osso e Ossos/efeitos dos fármacos , Química Click/métodos , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Citometria de Fluxo/métodos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...